

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 62 (2006) 5426-5434

Synthesis of 4-(3-hydroxyalkyl)pyrimidines by ring transformation reactions of 2-alkylidenetetrahydrofurans with amidines

Esen Bellur^{a,b} and Peter Langer^{a,c,*}

^aInstitut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany ^bInstitut für Chemie und Biochemie, Universität Greifswald, Soldmannstr. 16, 17487 Greifswald, Germany ^cLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany

> Received 21 September 2005; revised 13 March 2006; accepted 22 March 2006 Available online 14 April 2006

Abstract—Domino reactions of amidines with 2-alkylidenetetrahydrofurans, prepared by cyclization of 1,3-dicarbonyl dianions or 1,3-bissilyl enol ethers with various dielectrophiles, provided an efficient access to 4-(3-hydroxyalkyl)pyrimidines. © 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Functionalized pyrimidines¹ play an important role as analgesic, ^{1a} antihypertensive, ^{1b} antipyretic, ^{1c} and anti-inflammatory drugs, ^{1d} as pesticides, ^{1e} herbicides, ^{1f} and plant growth regulators. ^{1g} For example, the naturally occurring L-lathyrine shows a wide range of biological activity, such as pollen growth inhibition, antitumor, and hypoglycaemic activity (Fig. 1).² Although pyrimidine syntheses are known for a long time,³ the development of alternative and more efficient strategies is of considerable relevance.

2-Alkylidenetetrahydrofurans represent useful synthetic building blocks.^{4–6} They are, for example, available by one-pot cyclizations of free and masked 1,3-dicarbonyl dianions with 1,2-dielectrophiles.⁷ 2-Alkylidenetetrahydro-furans have been functionalized by lithiation and subsequent alkylation;⁸ in addition, palladium(0) catalyzed cross-coupling reactions of 2'-bromo-2-alkylidenetetrahydro-furans have been reported.⁹ Recently, we have reported the synthesis of 6-bromo-3-oxoalkanoates and functionalized benzofurans by reaction of 2-alkylidenetetrahydrofurans

Figure 1. L-Lathyrine.

Keywords: Amidines; Heterocycles; Pyrimidines; Ring transformation; Tetrahydrofurans.

* Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412; e-mail: peter.langer@uni-rostock.de

0040–4020/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.03.069

with boron tribromide (BBr₃).¹⁰ Furans and benzofurans have been prepared based on elimination¹¹ or oxidation¹² reactions of 2-alkylideneterahydrofurans. Some years ago, Detty reported the synthesis of functionalized pyrazoles by reaction of 2-alkylidenetetrahydrofurans with hydrazine.¹³ Herein, we report an efficient synthesis of functionalized 6-phenyl-4-(3-hydroxypropyl)pyrimidines by transformation reactions of 2-alkylidenetetrahydrofurans with amidines. The starting materials are readily available by one-pot cyclizations developed in our laboratory.

2. Results and discussion

2-(Benzoylmethylidene)tetrahydrofuran (2) was prepared, following our recently reported procedure,¹⁴ by cyclization of the dianion of benzoylacetone (1a) with 1-bromo-2chloroethane. The reaction of 2 with amidines 3a-c (NEt₃, EtOH, reflux) afforded the 2-phenyl-, 2-methyl-, and 2-dimethylamino-4-(3-hydroxypropyl)pyrimidines 4a-c(Scheme 1, Table 1).

Scheme 1. Synthesis of 4a–c; i: (1) 2.3 equiv LDA, THF, 0 °C, 1 h, (2) $Br(CH_2)_2Cl, -78 \rightarrow 20$ °C, 14 h, then reflux, 12 h; ii: NEt₃, EtOH, reflux, 12 h.

Table 1. Products and yields

4	R	% (4) ^a
a	Ph	60
b	Me	41
c	NMe ₂	56

^a Yields of isolated products.

The cyclization of dilithiated **1a** with 1,4-dibromo-2-butene gave, again following a known protocol,¹⁴ the novel 5-vinyl-2-alkylidenetetrahydrofuran **5** as a separable mixture of E/Z diastereomers E-**5** and Z-**5**. The reaction of amidines **3a**-**c** with E-**5** afforded the functionalized pyrimidines **6a**-**c** (Scheme 2, Table 2).

Scheme 2. Synthesis of 6a–c; i: (1) 2.3 equiv LDA, THF, 0 °C, 1 h, (2) BrCH₂CH=CHCH₂Br, $-78 \rightarrow 20$ °C, 14 h, then at 20 °C, 24 h; ii: NEt₃, EtOH, reflux, 12 h.

Table 2. Products and yields

6	R	% (6) ^a	
a	Ph	76	
b	Me	51	
c	NMe ₂	51	

^a Yields of isolated products.

The 5-alkyl- and 4-alkyl-2-alkylidenetetrahydrofurans **8a–d** and **9a,b** were prepared, following a recently reported procedure,¹⁵ by TiCl₄ mediated cyclization of 1,3-bis-silyl enol ether **7a** (available from benzoylacetone) with various epoxides (Scheme 3, Table 3). The cyclization of **7** with 1,2-epoxypropane and 1,2-epoxybutane afforded the 4-methyl- and 4-ethyl-2-alkylidenetetrahydrofurans **9a** and **9b**, respectively; besides, a small amount of regioisomers **8a** and **8b** was isolated. The 5-chloromethyl- and 5-bromomethyl-2-alkylidenetetrahydrofurans **8c,d** were prepared from epichloro- and epibromohydrin, respectively. The TiCl₄ mediated cyclization of 1,3-bis-silyl enol ether **7b**, prepared from acetylacetone, with epibromohydrin afforded **8e**.

Scheme 3. Synthesis of 8a–e and 9a,b, i: TiCl₄ (2 equiv), CH₂Cl₂, $-78 \rightarrow 20$ °C, 14 h, 20 °C, 3 h.

 Table 3. Products and yields

8	9	\mathbb{R}^1	R^2	% (8) ^a	% (9) ^a
a	а	Ph	Me	6	62 ^b
b	b	Ph	Et	9 ^b	65
c	с	Ph	CH ₂ Cl	54 ^b	0
d	d	Ph	CH_2Br	56 ^b	0
e	e	Me	CH_2Br	45	0

^a Yields of isolated products.

^b Known compound (Ref. 15)

The cyclization of dilithiated acetylacetone (**1b**) with epibromohydrin gave, following a known protocol,¹⁶ the 5-hydroxymethyl-2-alkylidenetetrahydrofuran **10** as an inseparable mixture of E/Z diastereomers (Scheme 4).

Scheme 4. Synthesis of 10, i: (1) NaH, *n*BuLi, THF, 0 °C, 1 h, (2) epibromohydrin, LiClO₄, $-78 \rightarrow -40$ °C, (3) -40 °C, 8 h, (4) $-40 \rightarrow 20$ °C, (5) 20 °C, 10 h.

The reaction of 4- and 5-alkyl substituted 2-alkylidenetetrahydrofurans with amidines was studied next (Scheme 5, Table 4). The reaction of **8a** with benzamidine (**3a**) and acetamidine (**3b**) afforded the 2-phenyl- and 2-methyl-4-(3-hydroxyalkyl)pyrimidines **11a** and **11b**, respectively. Pyrimidine **11c** was prepared from **8b** and **3a**. The reaction of **3a** with **8c**,d gave the (4-halo-3-hydroxybutyl)pyrimidines **11d**,e. (3-Hydroxyalkyl)pyrimidines **11f**-i were prepared from **9a**,b and **3a**,b. The reaction of **8e** with **3a** afforded the (4-bromo-3-hydroxybutyl)pyrimidine **11j**. Likewise, pyrimidine **11k** was prepared by reaction of 5-hydroxymethyl-2-alkylidenetetrahydrofuran **10** with benzamidine (**3a**).

Scheme 5. Synthesis of 11a-k, i: NEt₃, EtOH, reflux, 12 h.

Table 4. Products and yields

Substrate	11	\mathbb{R}^1	R^2	R^3	R^4	% (11) ^a
8a	a	Ph	Me	Н	Ph	45
8a	b	Ph	Me	Н	Me	41
8b	с	Ph	Et	Н	Ph	55
8c	d	Ph	CH ₂ Cl	Н	Ph	85
8d	e	Ph	CH ₂ Br	Н	Ph	79
9a	f	Ph	Н	Me	Ph	50
9a	g	Ph	Н	Me	Me	47
9b	h	Ph	Н	Et	Ph	57
9b	i	Ph	Н	Et	Me	42
8e	j	Me	CH_2Br	Н	Ph	91
10	k	Me	CH ₂ OH	Н	Ph	88

^a Yields of isolated products.

In conclusion, we have reported an efficient synthesis of 4-(3-hydroxyalkyl)pyrimidines based on ring transformation reactions of amidines with 2-alkylidenetetrahydrofurans which are readily available by one-pot cyclization reactions of free and masked 1,3-dicarbonyl dianions.

3. Experimental

3.1. General

All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere. For the ¹H and ¹³C NMR spectra the deuterated solvents indicated were used. Chemical shifts δ are reported in parts per million relative to CHCl₃ (¹H, 7.26 ppm) and CDCl₃ (¹³C, 77.0 ppm) as internal standards. ¹³C NMR spectral assignments are supported by DEPT analysis. Mass spectral data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, H₂O) or electrospray ionization (ESI). For preparative scale chromatography silica gel (60–200 mesh) was used. Melting points are uncorrected.

3.1.1. General procedure for the cyclization of 1,3-dicarbonyl dianions with 1-bromo-2-chloroethane and trans-1,4-dibromo-2-butene. A THF solution of LDA was prepared by addition of *n*BuLi (2.5 equiv) to a THF solution (10 mL/mmol) of diisopropylamine (2.5 equiv) at 0 °C. To the LDA solution was added the 1,3-dicarbonyl compound (1.0 equiv) at 0 $^{\circ}$ C and the solution was stirred at 0 $^{\circ}$ C for 1 h. To the solution was added 1-bromo-2-chloroethane (or *trans*-1.4-dibromo-2-butene) (1.2 equiv) at -78 °C. Subsequently, the temperature was allowed to rise to 20 °C during 14 h and the solution was stirred at 20 °C for 24 h. To the reaction mixture was added an aqueous solution of HCl (10%, 10 mL/mmol) and the mixture was extracted with diethylether (2×10 mL/mmol) and then dichloromethane $(3 \times 10 \text{ mL/mmol})$. The combined organic extracts were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, n-hexane/EtOAc) to give 2-alkylidenetetrahydrofuran 2 (or 5).

(Tetrahydrofuran-2(3H)-ylidene)acetophe-3.1.1.1. none (2).^{7a} Starting with benzoylacetone (2.50 g, 15.4 mmol), diisopropylamine (7.03 mL, 50 mmol), nBuLi (31.4 mL, 50 mmol, 15% in n-hexane), and 1-bromo-2chloroethane (2.40 mL, 17 mmol) in THF (150 mL), 2a was isolated after chromatography (silica gel, n-hexane/ EtOAc=75:1 \rightarrow 1:1) as a yellow oil (2.367 g, 82%). ¹H NMR (CDCl₃, 300 MHz): δ =2.16 (quint, J=7.2 Hz, 2H, CH₂ at C-4), 3.29 (t, J=7.8 Hz, 2H, CH₂ at C-3), 4.30 (t, J=7.2 Hz, 2H, OCH₂ at C-5), 6.55 (s, 1H, HC=C), 7.40-7.52 (m, 3H, 3×CH of Ph), 7.86-7.92 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =23.5 (C-3), 31.2 (C-4, CH₂), 71.7 (C-5, OCH₂), 94.9 (HC=C-O), 127.4 (2C), 128.1 (2C), 131.5 (CH of Ph), 139.6 (C of Ph), 179.0 (O-C=CH), 189.9 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =2985 (w), 2900 (w), 1656 (s), 1599 (s), 1588 (s), 1570 (s), 1447 (w), 1388 (m), 1363 (w), 1269 (w), 1283 (w), 1166 (s), 1054 (w), 1016 (m), 967 (s), 929 (m), 885 (w), 786 (w), 704 (s), 655 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=204 (4.21), 250 (3.93), 284 (4.26). MS (EI, 70 eV): m/z (%)=188 (M⁺,

23), 77 (75), 70 (100). HRMS (ESI): calcd for $C_{12}H_{12}O_2$ [M⁺]: 188.0832; found: 188.0822. Anal. Calcd for $C_{12}H_{12}O_2$ (188.226): C 76.57, H 6.43. Found: C 76.31, H 5.95.

3.1.1.2. (5-Vinyltetrahydrofuran-2(3H)-ylidene)acetophenone (5). Starting with benzoylacetone (1.622 g, 10 mmol), diisopropylamine (3.51 mL, 25 mmol), nBuLi (10 mL, 25 mmol, 2.5 M in n-hexane), and trans-1,4-dibromo-2-butene (2.781 g, 13 mmol) in THF (100 mL), E-5 (1.221 g, 57%) and Z-5 (0.747 g, 35%) were isolated after chromatography (silica gel, *n*-hexane/EtOAc= $75:1 \rightarrow 1:1$) as a yellow solid and dark yellow oil, respectively (combined yield: 92%). E-5: mp=60.5 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.86 - 1.98$ (m, 1H, CH₂ at C-4), 2.28-2.40 (m, 1H, CH₂ at C-4), 3.14–3.26 (m, 1H, CH₂ at C-3), 3.40-3.51 (m, 1H, CH₂ at C-3), 4.87-4.94 (m, 1H, OCH at C-5), 5.25–5.41 (m, 2H, CH₂=CH), 5.85–5.96 (m, 1H, CH=CH₂), 6.57 (m, 1H, CH=C), 7.40-7.52 (m, 3H, 3×CH of Ph), 7.86–7.92 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 50 MHz): δ_C=29.7 (C-3), 31.4 (C-4, CH₂), 84.1 (C-5, OCH), 95.1 (HC=C-O), 117.6 (CH₂=CH), 127.6 (2C), 128.3 (2C, CH of Ph), 131.7 (CH=CH₂), 135.9 (CH of Ph), 139.8 (C of Ph), 178.5 (O-C=CH), 190.1 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3059 (w), 2941 (w), 1640 (s), 1591 (s), 1566 (s), 1426 (w), 1382 (m), 173 (s), 997 (m), 974 (m), 932 (m), 900 (s), 841 (w), 790 (w), 705 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)=204 (4.16), 251 (3.92), 284 (4.27). MS (EI, 70 eV): m/z (%)=214 (M⁺, 77), 160 (7), 146 (67), 137 (12), 129 (1), 120 (1), 108 (2), 105 (100), 77 (60). Anal. Calcd for C14H14O2 (214.253): C 78.48, H 7.59; Found: C 78.33, H 7.63. Z-5: ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.85 - 2.01$ (m, 2H, CH₂ at C-4), 2.59 (t, J=7.2 Hz, 2H, CH₂ at C-3), 4.18-4.25 (m, 1H, OCH at C-5), 5.14-5.31 (m, 2H, CH2=CH), 5.84-5.95 (m, 1H, CH=CH₂), 6.20 (s, 1H, CH=C), 7.42-7.60 (m, 3H, 3×CH of Ph), 7.86–7.89 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =31.9 (C-3), 34.8 (C-4, CH₂), 71.3 (C-5, OCH), 95.8 (CH=C-O), 114.3 (CH₂=CH), 126.4 (2C), 128.1 (2C), 131.8 (CH of Ph), 134.0 (C of Ph), 140.2 (CH=CH₂), 181.8 (O-C=CH), 197.3 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =3069 (w), 2979 (w), 2927 (w), 1716 (w), 1604 (s), 1572 (s), 1490 (m), 1456 (m), 1424 (m), 1360 (w), 1320 (w), 1298 (m), 1271 (m), 1181 (w), 1160 (w), 1150 (w), 1118 (w), 1055 (w), 1025 (w), 994 (m), 927 (m), 767 (m), 694 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)=246 (3.85), 299 (4.00). MS (EI, 70 eV): m/z (%)=214 (M⁺, 100), 160 (7), 147 (81), 137 (10), 129 (1), 120 (1), 105 (99), 77 (82). HRMS (ESI): calcd for C₁₄H₁₄O₂ [M⁺]: 214.0988; found: 214.0983.

3.1.2. General procedure for the [3+2] cyclization of 1,3bis-silyl enol ethers with epoxides. To a CH_2Cl_2 solution (10 mL/mmol) of 1,3-bis-silyl enol ether **7a,b** (1.0 equiv) and the epoxide (1.2 equiv) [in the presence of molecular sieves (4 Å)], was added TiCl₄ (2.4 equiv) at -78 °C. Subsequently, the temperature was allowed to rise to 20 °C during 14 h and the solution was stirred for 3 h at 20 °C. The molecular sieves were filtered-off and washed with CH_2Cl_2 . To the solution was added a saturated aqueous solution of NaHCO₃, the organic layer was separated and the aqueous layer was repeatedly extracted with CH_2Cl_2 . The combined organic extracts were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, *n*-hexane/EtOAc) to give the 2-alkylidenetetrahydrofurans 8a-e and 9a,b.

Compounds **8a,9a**: Starting with **7a** (6.131 g, 20 mmol), propeneoxide (1.7 mL, 24 mmol) and TiCl₄ (5.3 mL, 48 mmol) in CH₂Cl₂ (200 mL), **9a** (2.487 g, 62%) and **8a** (0.232 g, 6%) were isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 1:1) as light brown oils.

3.1.2.1. (4-Methyltetrahydrofuran-2(3H)-vlidene)acetophenone (9a).¹⁵ ¹H NMR (CDCl₃, 300 MHz): δ =1.11 (d, J=6.6 Hz, 3H, CH₃), 2.45–2.56 (m, 1H, CH at C-4), 2.61-2.70 (m, 2H, CH₂ at C-3), 3.55-3.62 (m, 1H, OCH₂ at C-5), 4.07-4.15 (m, 1H, OCH2 at C-5), 6.20 (d, J=1.8 Hz, 1H, CH=C), 7.43-7.54 (m, 3H, 3×CH of Ph), 7.87-7.91 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =17.4 (CH₃), 31.7 (C-4, CH), 39.4 (C-3, CH₂), 77.7 (C-5, OCH₂), 95.4 (CH=C-O), 127.6 (2C), 128.2 (2C), 131.6 (CH of Ph), 139.7 (C of Ph), 179.1 (O-C=CH), 190.2 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =2967 (w), 1607 (s), 1457 (m), 1418 (m), 1267 (m), 845 (w), 766 (m), 694 (m). MS (EI, 70 eV): m/z (%)=202 (M⁺, 70), 187 (100), 162 (13), 147 (20), 125 (22), 105 (45). Anal. Calcd for C₁₃H₁₄O₂ (202.249): C 77.20, H 6.98. Found: C 77.03, H 7.16.

3.1.2.2. (5-Methyltetrahydrofuran-2(*3H*)-ylidene)acetophenone (8a). ¹H NMR (CDCl₃, 300 MHz): δ =1.57 (d, *J*=6.6 Hz, 3H, CH₃), 1.96–2.08 (m, 1H, CH₂ at C-4), 2.18–2.29 (m, 1H, CH₂ at C-4), 3.54–3.61 (m, 2H, CH₂ at C-3), 4.32–4.41 (m, 1H, OCH at C-5), 6.20 (d, *J*=1.8 Hz, 1H, CH=C), 7.38–7.54 (m, 3H, 3×CH of Ph), 7.87–7.91 (m, 2H, 2×CH of Ph). IR (neat, cm⁻¹): $\tilde{\nu}$ =2967 (w), 1721 (w), 1681 (m), 1607 (s), 1453 (m), 1414 (m), 1269 (m), 1184 (w), 1079 (w), 1006 (w), 847 (w), 768 (m), 694 (m). MS (EI, 70 eV): *m/z* (%)=202 (M⁺, 10), 187 (7), 162 (43), 147 (51), 105 (100), 91 (10), 77 (66), 69 (93). HRMS (ESI): calcd for C₁₃H₁₄O₂ [M⁺]: 202.0988; found: 202.0994.

Compounds **8b,9b**: Starting with **7a** (6.131 g, 20 mmol), 1,2-epoxybutane (2.1 mL, 24 mmol) and TiCl₄ (5.3 mL, 48 mmol) in CH₂Cl₂ (200 mL), **9b** (2.792 g, 65%) and **8b** (0.402 g, 9%) were isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 1:1) as light brown oils.

3.1.2.3. (4-Ethyltetrahydrofuran-2(3*H*)-ylidene)acetophenone (9b). ¹H NMR (CDCl₃, 300 MHz): δ =0.86 (t, *J*=7.5 Hz, 3H, CH₂CH₃), 1.29–1.43 (m, 2H, CH₂CH₃), 1.75–1.89 (m, 1H, CH at C-4), 2.31–2.37 (m, 1H, CH₂ at C-3), 2.44–2.52 (m, 1H, CH₂ at C-3), 3.63–4.01 (dm, 2H, OCH₂ at C-5), 6.08 (d, *J*=1.8 Hz, 1H, CH=C), 7.30–7.44 (m, 3H, 3×CH of Ph), 7.74–7.78 (m, 2H, 2×CH of Ph). IR (neat, cm⁻¹): $\tilde{\nu}$ =2964 (m), 2880 (w), 1721 (w), 1607 (s), 1457 (s), 1266 (s), 1184 (m), 1150 (w), 1080 (m), 1040 (m), 1006 (w), 925 (w), 847 (m), 767 (m), 694 (m). MS (EI, 70 eV): *m/z* (%)=216 (M⁺, 10), 187 (100), 105 (72), 77 (70), 69 (91). HRMS (ESI): calcd for C₁₄H₁₆O₂ [M⁺]: 216.1145; found: 216.1142.

3.1.2.4. (5-Ethyltetrahydrofuran-2(3*H*)-ylidene)acetophenone (8b).¹⁵ ¹H NMR (CDCl₃, 300 MHz): δ =0.98 (t, *J*=7.5 Hz, 3H, CH₂CH₃), 1.43–1.55 (m, 2H, CH₂CH₃), 1.68-1.82 (m, 1H, CH₂ at C-4), 2.21-2.32 (m, 1H, CH₂ at C-4), 2.50 (dt, J=8.1, 0.6 Hz, 1H, CH₂ at C-3), 2.66–2.81 (m, 1H, CH₂ at C-3), 4.32–4.38 (m, 1H, OCH at C-5), 6.82 (d, J=1.8 Hz, 1H, CH=C), 7.34–7.50 (m, 3H, 3×CH of Ph), 7.81-7.85 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =9.7 (CH₂CH₃), 27.8 (CH₂CH₃), 28.6 (C-3), 31.8 (C-4, CH₂), 85.6 (C-5, OCH), 94.6 (CH=C-O), 127.4 (2C), 128.2 (2C), 131.5 (CH of Ph), 139.8 (C of Ph), 179.1 (O-C=CH), 190.2 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =3084 (w), 3061 (w), 3030 (w), 2966 (s), 2933 (s), 2879 (m), 2855 (m), 1654 (s), 1587 (s), 1571 (m), 1456 (m), 1447 (m), 1386 (s), 1167 (s). MS (EI, 70 eV): m/z (%)=216 (M⁺, 70), 201 (100), 176 (13), 161 (20), 139 (22), 119 (45). The exact molecular mass $m/z=216.1150\pm 2$ ppm [M⁺] for C₁₄H₁₆O₂ was confirmed by HRMS (EI, 70 eV). Anal. Calcd for $C_{14}H_{16}O_2$ (216.276): C 77.75, H 7.46. Found: C 77.48, H 7.60.

(5-Chloromethyltetrahydrofuran-2(3H)-yl-3.1.2.5. idene)acetophenone (8c).¹⁵ Starting with 7a (6.131 g, 20 mmol), epichlorohydrin (1.9 mL, 24 mmol) and TiCl₄ (5.3 mL, 48 mmol) in CH₂Cl₂ (200 mL), 8c was isolated after chromatography (silica gel, *n*-hexane/EtOAc= $100:1 \rightarrow$ 1:1) as a yellow oil (2.538 g, 54%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 2.00 - 2.12$ (m, 1H, CH₂ at C-4), 2.30-2.41 (m, 1H, CH₂ at C-4), 3.19–3.31 (m, 1H, CH₂ at C-3), 3.43-3.55 (m, 1H, CH₂ at C-3), 3.69 (d, J=5.7 Hz, 2H, CH2-Cl), 4.70-4.80 (m, 1H, OCH at C-5), 6.59 (t, J=1.5 Hz, 1H, CH=C), 7.40–7.53 (m, 3H, 3×CH of Ph), 7.89-7.92 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =26.6 (C-3), 31.2 (C-4, CH₂), 45.4 (CH₂-Cl), 82.1 (C-5, OCH), 95.3 (CH=C-O), 127.4 (2C), 128.2 (2C), 131.7 (CH of Ph), 139.4 (C of Ph), 177.7 (O-C=CH), 190.1 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =3099 (w), 3083 (w), 3055 (w), 2984 (w), 2919 (w), 1663 (s), 1598 (s), 1583 (s), 1566 (s), 1383 (m), 1374 (m), 1167 (s). MS (EI, 70 eV): *m/z* (%)=236 (M⁺, 100), 159 (52), 105 (46), 77 (33), 69 (48). The exact molecular mass m/z =236.0604 \pm 2 ppm [M⁺] for C₁₃H₁₃ClO₂ was confirmed by HRMS (EI, 70 eV). Anal. Calcd for $C_{13}H_{13}ClO_2$ (236.694): C 65.97, H 5.54. Found: C 66.12, H 5.43.

(5-Bromomethyltetrahydrofuran-2(3H)-yl-3.1.2.6. idene)acetophenone (8d).¹⁵ Starting with 7a (6.131 g, 20 mmol), epibromohydrin (2.0 mL, 24 mmol) and TiCl₄ (5.3 mL, 48 mmol) in CH₂Cl₂ (200 mL), 8d was isolated after chromatography (silica gel, n-hexane/EtOAc= $100:1 \rightarrow 1:1$) as a yellow oil (3.149 g, 56%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.98 - 2.11$ (m, 1H, CH₂ at C-4), 2.34-2.45 (m, 1H, CH₂ at C-4), 3.19-3.30 (m, 1H, CH₂ at C-3), 3.43–3.52 (m, 1H, CH₂ at C-3), 3.53–3.57 (m, 2H, CH₂-Br), 4.69-4.78 (m, 1H, OCH at C-5), 6.58 (t, J=1.5 Hz, 1H, CH=C), 7.40–7.52 (m, 3H, 3×CH of Ph), 7.88-7.92 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_C=27.8 (C-3), 31.2 (C-4, CH₂), 33.4 (CH₂-Br), 81.9 (C-5, OCH), 95.3 (CH=C-O), 127.4 (2C), 128.2 (2C), 131.7 (CH of Ph), 139.4 (C of Ph), 177.6 (O-C=CH), 190.1 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =3098 (w), 3054 (w), 3026 (w), 2981 (w), 2945 (w), 2917 (w), 1660 (s), 1596 (s), 1567 (s), 1457 (m), 1433 (m), 1380 (s), 1165 (s). MS (EI, 70 eV): *m/z* (%)=280 (M⁺, 60), 203 (24), 180 (18), 147 (35), 122 (33), 105 (100). The exact molecular mass $m/z=280.0099\pm 2$ ppm [M⁺] for C₁₃H₁₃BrO₂ was

confirmed by HRMS (EI, 70 eV). Anal. Calcd for $C_{13}H_{13}BrO_2$ (281.145): C 55.54, H 4.66. Found: C 55.22, H 4.36.

3.1.2.7. 1-(5-Bromomethyldihydrofuran-2(3H)-vlidene)propan-2-one (8e). Starting with 7b (7.334 g, 30 mmol), epibromohydrin (2.98 mL, 36 mmol) and TiCl₄ (7.91 mL, 72 mmol) in CH₂Cl₂ (150 mL), 8e was isolated after chromatography (silica gel, *n*-hexane/EtOAc= $100:1 \rightarrow 1:1$) as a light brown oil (2.931 g, 45%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.92 - 2.05$ (m, 1H, CH₂ at C-4). 2.14 (s, 3H, CH₃), 2.23–2.34 (m, 1H, CH₂ at C-4), 3.00– 3.12 (m, 1H, CH₂ at C-3), 3.28–3.38 (m, 1H, CH₂ at C-3), 3.39-3.58 (m, 2H, CH₂-Br), 4.61-4.70 (m, 1H, OCH at C-5), 5.83 (t, J=1.5 Hz, 1H, CH=C). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =28.2 (C-3, CH₂), 31.3 (CH₃), 31.6 (C-4, CH₂), 34.0 (CH₂-Br), 82.1 (C-5, OCH), 99.4 (CH=C-O), 176.2 (O-C=CH), 198.4 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =2960 (m), 2928 (m), 1704 (s), 1617 (s), 1591 (s), 1421 (s), 1365 (s), 1303 (s), 1252 (s), 1150 (s), 1086 (m), 1054 (m), 1020 (m), 979 (w), 951 (w), 662 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=260 (3.86). MS (EI, 70 eV): m/z (%)=220 (M⁺ [⁸¹Br], 9), 218 (M⁺ [⁷⁹Br], 9), 205 (26), 203 (26), 139 (2), 123 (2), 95 (5), 85 (14), 69 (100). HRMS (ESI): calcd for $C_8H_{11}BrO_2$ [M⁺]: 219.9916 (⁸¹Br), 217.9937 (⁷⁹Br); found: 219.9921 (⁸¹Br), 217.9942 (⁷⁹Br).

3.1.3. Cyclization of 1,3-dicarbonyl dianions with epibromohydrin: 1-(dihydro-5-(hydroxymethyl)furan-2(3H)ylidene)propan-2-one (10). The synthesis of **10** has been previously reported.¹⁶

3.1.4. General procedure for synthesis of functionalized pyrimidines. To an ethanol (20 mL/mmol) solution of (tetrahydrofuran-2(3*H*)-ylidene)acetophenone (**2**, **5**, **8a**–d, **9a,b**, or **10**) (1 equiv) were added the amidine (**3a–c**) (10 equiv) and triethylamine (10 equiv) at 20 °C. The reaction mixture was heated and stirred for 12 h at 60 °C. After cooling, to the reaction mixture was added water (30 mL/mmol), and extracted with dichloromethane repeatedly. The combined organic extracts were dried (Na₂SO₄), filtered, and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, *n*-hexane/EtOAc) to give (6-phenylpyrimidin-4-yl) alcohols (**4a–c**, **6a–c** or **11a–k**).

3-(2.6-Diphenvlpvrimidin-4-vl)propan-1-ol 3.1.4.1. (4a). Starting with 2 (0.100 g, 0.53 mmol), benzamidine hydrochloride monohydrate (3a) (0.928 g, 5.31 mmol) and NEt₃ (1.1 mL, 8.0 mmol) in ethanol (10 mL), 4a was isolated after chromatography (silica gel, n-hexane/ EtOAc=20:1 \rightarrow 1:1) as a pale yellow solid (0.92 g, 60%), mp=80.0 °C. ¹H NMR (CDCl₃, 300 MHz): δ =2.13 (quint, J=6.45 Hz, 2H, CH₂), 3.05 (t, J=6.9 Hz, 2H, CH₂), 3.20 (br s, 1H, OH), 3.80 (t, J=6.0 Hz, 2H, CH₂OH), 7.46-7.55 (m, 7H, CH, 6×CH of Ph), 8.20-8.24 (m, 2H, 2×CH of Ph), 8.54-8.57 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 150 MHz): δ_C =31.0, 35.0 (CH₂), 62.2 (CH₂OH), 113.9 (CH=C-N), 127.4 (2C), 128.5 (2C), 128.7 (2C), 129.0 (2C), 130.8, 131.0 (CH of Ph), 137.2, 138.0 (C of Ph), 164.3 (C-Ph), 164.4 (N=C-N), 170.8 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3372 (br), 3088 (m), 3064 (m), 3038 (m), 3006 (w), 2933 (s), 2873 (m, C-H), 1770 (w), 1731 (m),

1598 (s), 1571 (s), 1533 (s), 1497 (m), 1445 (m), 1425 (m), 1400 (m), 1374 (s), 1317 (m), 1290 (m), 1221 (m), 1177 (m), 1061 (s), 1031 (s), 934 (m), 911 (w), 879 (w), 837 (w), 778 (w), 751 (s), 695 (s), 667 (w), 636 (m), 582 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=206 (4.52), 256 (4.52). MS (EI, 70 eV): *m/z* (%)=290 (M⁺, 1), 273 (6), 259 (11), 246 (100), 219 (1), 205 (15), 164 (14), 103 (45), 77 (29). The exact molecular mass *m/z*=290.1419±2 ppm [M⁺] for C₁₉H₁₈N₂O was confirmed by HRMS (EI, 70 eV).

3.1.4.2. 3-(2-Methyl-6-phenylpyrimidin-4-yl)propan-1-ol (4b). Starting with 2 (0.100 g, 0.53 mmol), acetamidine hydrochloride (3b) (0.527 g, 5.3 mmol) and NEt₃ (1.1 mL, 8.0 mmol) in ethanol (10 mL), 4b was isolated after chromatography (silica gel, *n*-hexane/EtOAc= $50:1 \rightarrow 1:1$) as a pale yellow oil (0.049 g, 41%). ¹H NMR (CDCl₃, 300 MHz): δ =2.02 (quint, J=6.3 Hz, 2H, CH₂), 2.77 (s, 3H, CH₃), 2.95 (t, J=6.9 Hz, 2H, CH₂), 3.74 (t, J=5.7 Hz, 2H, OCH₂), 7.40 (s, 1H, CH), 7.48–7.51 (m, 3H, 3×CH of Ph), 8.04–8.07 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =26.0 (CH₃), 31.0, 35.1 (CH₂), 62.1 (OCH₂), 113.1 (CH=C-N), 127.2 (2C), 128.2, 128.9 (2C, CH of Ph), 137.0 (C of Ph), 164.5 (C-Ph), 167.7 (N=C-N), 170.2 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3340 (s), 3065 (m), 2933 (s), 2870 (m), 1585 (s), 1535 (s), 1441 (s), 1396 (s), 1339 (m), 1285 (m), 1221 (w), 1179 (w), 1118 (w), 1063 (s), 1005 (w), 921 (w), 874 (w), 753 (m), 695 (s), 650 (w), 622 (w), 588 (w), 541 (w). UV-vis (CH₃CN, nm): λ_{max} $(\log \varepsilon) = 203$ (4.40), 247 (3.97), 275 (4.07), 322 (3.50). MS (EI, 70 eV): m/z (%)=228 (M⁺, 1), 211 (4), 197 (8), 184 (100), 128 (3), 114 (2), 102 (8), 77 (6). HRMS (ESI): calcd for C₁₄H₁₆N₂O ([M+1]⁺): 229.13409; found: 229.13331.

3.1.4.3. 3-(2-Dimethylamino-6-phenylpyrimidin-4-yl)propan-1-ol (4c). Starting with 2 (0.100 g, 0.53 mmol), 1,1dimethylguanidine sulfate (3c) (1.489 g, 5.3 mmol) and NEt₃ (1.84 mL, 13.3 mmol) in ethanol (10 mL), 4c was isolated after chromatography (silica gel, n-hexane/ $EtOAc=50:1 \rightarrow 1:1$) as a yellow oil (0.076 g, 56%). ¹H NMR (CDCl₃, 300 MHz): δ =2.00 (quint, J=6.0 Hz, 2H, CH₂), 2.85 (t, J=6.6 Hz, 2H, CH₂), 3.26 (s, 6H, 2×CH₃), 3.75 (t, J=6.0 Hz, 2H, CH₂OH), 6.82 (s, 1H, CH=C), 7.43-7.48 (m, 3H, 3×CH of Ph), 8.04-8.08 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =30.3, 35.4 (CH₂), 37.3 (2C, CH₃), 62.5 (OCH₂), 104.1 (CH=C-N), 127.1 (2C), 128.6 (2C), 130.3 (CH of Ph), 137.9 (C of Ph), 162.2 (N=C-N), 164.7 (C-Ph), 170.6 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3365 (br), 2927 (w), 1670 (w), 1645 (w), 1563 (s), 1494 (w), 1448 (m), 1408 (m), 1368 (m), 1326 (w), 1246 (w), 1223 (w), 1181 (w), 1149 (w), 1117 (w), 1066 (m), 1027 (w), 770 (w), 695 (w). MS (EI, 70 eV): m/z (%)=257 (M⁺, 8), 242 (2), 227 (4), 213 (100), 198 (6), 184 (4), 170 (9), 128 (4), 114 (2), 114 (2), 105 (12), 77 (10).

3.1.4.4. 5-(2,6-Diphenylpyrimidin-4-yl)pent-1-en-3-ol (6a). Starting with 5 (0.100 g, 0.467 mmol), benzamidine hydrochloride monohydrate (3a) (0.815 g, 4.67 mmol), NEt₃ (0.7 mL, 4.67 mmol) in ethanol (10 mL), 6a was isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 1:1) as a pale yellow solid (0.112 g, 76%), mp=85 °C. ¹H NMR (CDCl₃, 300 MHz): δ =2.01–2.20 (m, 2H, CH₂), 3.00–3.11 (m, 2H, CH₂), 3.59 (br s,

1H, OH), 4.30 (q, J=6.0 Hz, 1H, OCH), 5.16 (dt, J=10.4, 1.5 Hz, 1H, CH₂=CH), 5.33 (dt, J=17.2, 1.5 Hz, 1H, CH₂=CH), 5.91-6.01 (m, 1H, CH=CH₂), 7.41 (s, 1H, CH), 7.43–7.57 (m, 6H, 6×CH of Ph), 8.19–8.23 (m, 2H, 2×CH of Ph), 8.54–8.56 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_C =33.8, 34.9 (CH₂), 72.0 (OCH), 113.6 (CH=C-N), 114.6 (CH₂=CH), 127.1 (2C), 128.3 (2C), 128.4 (2C), 128.8 (2C), 130.5, 130.7 (CH of Ph), 136.9, 137.7 (C of Ph), 140.8 (CH=CH₂), 163.9 (C-Ph), 164.0 (N=C-N), 170.6 (N-C=CH). IR (KBr, cm^{-1}): $\tilde{\nu}$ =3343 (br), 3064 (w), 2921 (w), 1571 (s), 1535 (s), 1373 (s), 926 (m), 752 (m), 697 (s). UV-vis (CH₃CN, nm): λ_{max} (log ε)=204 (4.56), 256 (4.54). MS (EI, 70 eV): m/z (%)=316 (M⁺, 12), 299 (10), 285 (3), 271 (1), 259 (28), 246 (100), 103 (54), 77 (80). HRMS (ESI): calcd for C₂₁H₂₀N₂O [M⁺]: 315.1492; found: 315.1491. Anal. Calcd for C₂₁H₂₀N₂O (316.402): C 79.72, H 6.37, N 8.85. Found: C 79.73, H 6.57, N 8.50.

3.1.4.5. 5-(2-Methyl-6-phenylpyrimidin-4-yl)pent-1en-3-ol (6b). Starting with 5 (0.100 g, 0.467 g), acetamidine hydrochloride (3b) (0.465 g, 4.67 mmol) and NEt₃ (0.7 mL, 4.67 mmol) in ethanol (100 mL), 6b was isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 1:1) as a pale yellow solid (0.061 g, 51%), mp=61.9 °C. ¹H NMR $(CDCl_3, 300 \text{ MHz}): \delta = 1.94 - 2.06 \text{ (m, 2H, CH}_2), 2.77 \text{ (s,}$ 3H, CH₃), 2.95 (dd, J=7.2, 1.5 Hz, 2H, CH₂), 4.19 (br s, 1H, OH), 4.21–4.27 (m, 1H, OCH), 5.13 (dt, J=10.5, 1.5 Hz, 1H, CH₂=CH), 5.30 (dt, J=17.1, 1.5 Hz, 1H, CH₂=CH), 5.87-5.99 (m, 1H, CH=CH₂), 7.39 (s, 1H, CH), 7.46–7.51 (m, 3H, 3×CH of Ph), 8.03–8.06 (m, 2H, $2 \times CH$ of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_C = 26.0$ (CH₃), 33.9, 35.2 (CH₂), 72.0 (OCH), 113.1 (CH=C-N), 114.6 (CH₂=CH), 127.2 (2C), 128.9 (2 C), 130.7 (CH of Ph), 137.0 (C of Ph), 140.9 (CH=CH₂), 164.4 (C-Ph), 167.7 (N=C-N), 170.2 (N-C=CH). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3253 (br), 3091 (w), 3065 (w), 2921 (w), 2853 (w), 1583 (s), 1539 (s), 1497 (w), 1446 (m), 1404 (s), 1368 (m), 1326 (w), 1122 (m), 1055 (w), 998 (m), 925 (m), 862 (w), 785 (w), 743 (w), 692 (m), 624 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=204 (4.48), 249 (4.02), 255 (4.03), 275 (4.20). MS (EI, 70 eV): m/z (%)=254 (M⁺, 9), 237 (6), 225 (2), 209 (5), 197 (25), 184 (100), 128 (5), 114 (3), 77 (6). Anal. Calcd for C₁₆H₁₈N₂O (254.332): C 75.56, H 7.13, N 11.02. Found: C 75.61, H 7.18, N 10.89.

3.1.4.6. 5-(2-Dimethylamino-6-phenylpyrimidin-4-yl)pent-1-en-3-ol (6c). Starting with 5 (0.100 g, 0.467 mmol), 1,1-dimethylguanidine sulfate (3c) (1.311 g, 4.67 mmol) and NEt₃ (0.7 mL, 4.67 mmol) in ethanol (10 mL), 6c was isolated after chromatography (silica gel, n-hexane/ EtOAc=100:1 \rightarrow 1:1) as a pale yellow oil (0.067 g, 51%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.89 - 1.98$ (m, 1H, CH₂), 1.99-2.11 (m, 1H, CH₂), 2.79-2.93 (m, 2H, CH₂), 3.27 (s, 6H, 2×NCH₃), 4.25–4.28 (m, 1H, OCH), 5.13 (dt, J=10.5, 1.5 Hz, 1H, CH₂=CH), 5.31 (dt, J=17.1, 1.5 Hz, 1H, CH2=CH), 5.87-5.98 (m, 1H, CH=CH2), 6.82 (s, 1H, CH), 7.44-7.48 (m, 3H, 3×CH of Ph), 8.04-8.06 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =34.0, 34.6 (CH₂), 37.3 (NCH₃), 72.2 (OCH), 104.1 (CH=C-N), 114.3 (CH₂=CH), 127.1 (2C), 128.6 (2C), 130.3 (CH of Ph), 137.9 (C of Ph), 141.2 (CH=CH₂), 162.1 (N=C-N), 164.6 (C-Ph), 170.6 (N-C=CH). IR (neat, cm^{-1}): $\tilde{\nu}$ =3403 (br), 2926 (m), 2859 (w), 1680 (w), 1645 (w), 1562 (s), 1497 (w), 1445 (w), 1408 (m), 1368 (m), 1320 (w), 1245 (w), 1223 (w), 1180 (w), 1117 (w), 1067 (w), 1026 (w), 995 (w), 922 (w), 770 (w), 694 (w). UV–vis (CH₃CN, nm): λ_{max} (log ε)=254 (4.27), 337 (3.45). MS (EI, 70 eV): *m/z* (%)=283 (M⁺, 15), 226 (9), 213 (100), 198 (5), 184 (2), 105 (40), 77 (34). HRMS (ESI): calcd for C₁₇H₂₁N₃O [M⁺]: 283.16846; found: 283.16879.

3.1.4.7. 4-(2,6-Diphenylpyrimidin-4-yl)-butan-2-ol (11a). Starting with 8a (0.100 g, 0.49 mmol), benzamidine hydrochloride monohydrate (3a) (0.857 g, 4.9 mmol) and NEt₃ (0.67 mL, 4.9 mmol) in ethanol (5 mL), **11a** was isolated after chromatography (silica gel, *n*-hexane/EtOAc= $100:1 \rightarrow 1:1$) as a yellow oil (0.067 g, 45%). ¹H NMR $(CDCl_3, 300 \text{ MHz}): \delta = 1.28 \text{ (d, } J = 6.6 \text{ Hz}, 3\text{H}, CH_3), 1.92 \text{--}$ 2.03 (m, 2H, CH₂), 2.93-3.07 (m, 2H, CH₂), 3.90-3.99 (m, 1H, OCH), 7.41–7.55 (m, 7H, CH=C, 6×CH of Ph), 8.20-8.24 (m, 2H, 2×CH of Ph), 8.53-8.57 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_C =23.1 (CH₃), 34.0, 37.0 (CH₂), 66.6 (OCH), 113.1 (CH=C-N), 126.2 (2C), 127.9 (2C), 128.0 (2C), 128.3 (2C), 130.1, 130.5 (CH of Ph), 136.7, 137.7 (C of Ph), 163.2 (C-Ph), 163.7 (N=C-N), 169.2 (N-C=CH). IR (neat, cm^{-1}): $\tilde{\nu}$ =3336 (br), 3061 (w), 2956 (m), 2927 (m), 2873 (w), 1633 (w), 1575 (s), 1536 (s), 1498 (w), 1451 (m), 1374 (s), 1276 (w), 1177 (w), 1112 (m), 1077 (m), 1033 (m), 753 (m), 697 (s). UV–vis (CH₃CN, nm): λ_{max} (log ϵ)=207 (4.48), 256 (4.52). MS (EI, 70 eV): m/z (%)=304 (M⁺, 1), 287 (5), 272 (4), 259 (15), 245 (100), 231 (19), 227 (1), 143 (7), 128 (6), 114 (7), 104 (26), 77 (14). Anal. Calcd for C₂₀H₂₀N₂O (304.391): C 78.92, H 6.62, N 9.20. Found: C 78.83, H 6.49, N 9.12.

3.1.4.8. 4-(2-Methyl-6-phenylpyrimidin-4-yl)-butan-2-ol (11b). Starting with 8b (0.100 g, 0.49 mmol), acetamidine hydrochloride (3b) (0.488 g, 4.9 mmol) and NEt₃ (0.67 mL, 4.9 mmol) in ethanol (5 mL), 11b was isolated after chromatography (silica gel, *n*-hexane/EtOAc= $50:1 \rightarrow$ EtOAc), as a pale yellow oil (0.049 g, 41%). ¹H NMR (CDCl₃, 300 MHz): δ=1.24 (d, J=6.3 Hz, 3H, CH₃), 1.70-1.79 (m, 1H, CH₂), 1.97-2.10 (m, 1H, CH₂), 2.35-2.49 (m, 2H, CH₂), 2.77 (s, 3H, CH₃), 3.83-3.93 (m, 1H, OCH), 7.40 (s, 1H, CH=C), 7.48-7.51 (m, 3H, 3×CH of Ph), 8.04-8.08 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =20.4, 25.4 (CH₃), 32.5, 36.8 (CH₂), 66.0 (OCH), 112.6 (CH=C-N), 126.7 (2C), 127.7, 128.3 (2C, CH of Ph), 136.3 (C of Ph), 163.7 (C-Ph), 167.0 (N= C–N), 170.8 (N–C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3339 (br), 3063 (w), 2965 (m), 2932 (m), 2878 (w), 1606 (s), 1531 (s), 1452 (m), 1421 (m), 1377 (m), 1326 (s), 1287 (s), 1180 (w), 1119 (w), 1075 (m), 1041 (m), 741 (s), 698 (m), 649 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=242 (3.96), 325 (4.18). MS (EI, 70 eV): m/z (%)=242 (M⁺, 98), 227 (1), 225 (2), 210 (2), 197 (5), 183 (100), 169 (17), 148 (5), 105 (14), 77 (19), 57 (22). Anal. Calcd for C15H18N2O (242.316): C 74.35, H 7.49, N 11.56. Found: C 73.95, H 7.21, N 11.16.

3.1.4.9. 1-(2,6-Diphenylpyrimidin-4-yl)pentan-3-ol (**11c).** Starting with **8b** (0.100 g, 0.46 mmol), benzamidine hydrochloride monohydrate (**3a**) (0.808 g, 4.6 mmol) and NEt₃ (0.64 mL, 4.6 mmol) in ethanol (5 mL), **11c** was

isolated after chromatography (silica gel, n-hexane/ EtOAc=100:1 \rightarrow 1:1) as a yellow oil (0.081 g, 55%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.25$ (t, J = 7.2 Hz, 3H, CH₃), 1.51-1.63 (m, 2H, CH₂), 1.92-2.05 (m, 2H, CH₂), 2.92 (t, J=7.8 Hz, 2H, CH₂), 3.81–3.91 (m, 1H, OCH), 7.37–7.53 (m, 7H, CH=C, 6×CH of Ph), 8.19-8.22 (m, 2H, 2×CH of Ph), 8.57-8.60 (m, 2H, 2×CH of Ph). ¹³C NMR $(CDCl_3, 75 \text{ MHz}): \delta_C = 23.5 (CH_3), 24.8, 37.8, 38.6 (CH_2),$ 67.7 (OCH), 113.4 (CH=C-N), 127.1 (2C), 128.3 (2C), 128.4 (2C), 128.8 (2C), 130.4, 130.6 (CH of Ph), 137.2, 138.1 (C of Ph), 163.7 (C-Ph), 164.2 (N=C-N), 171.1 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3382 (br), 3064 (w), 2974 (s), 2931 (m), 2865 (s), 2810 (w), 1721 (m), 1575 (s), 1532 (s), 1493 (m), 1451 (m), 1375 (s), 1314 (m), 1309 (m), 1278 (s), 1172 (m), 1118 (s), 1077 (m), 1029 (w), 921 (w), 841 (w), 746 (s), 697 (s), 637 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=256 (4.41). MS (EI, 70 eV): m/z (%)=318 (M⁺, 1), 273 (16), 259 (14), 146 (100), 233 (2), 216 (31), 202 (5), 174 (28), 158 (5), 143 (6), 133 (16), 128 (5), 120 (17), 114 (9), 106 (14), 104 (83), 91 (6), 77 (41). Anal. Calcd for C21H22N2O (318.418): C 79.21, H 6.96, N 8.89. Found: C 78.99, H 7.01, N 8.64.

3.1.4.10. 1-Chloro-4-(2,6-diphenylpyrimidin-4-yl)butan-2-ol (11d). Starting with 8c (0.100 g, 0.42 mmol), benzamidine hydrochloride monohydrate (3a) (0.725 g, 4.2 mmol) and NEt₃ (0.6 mL, 4.2 mmol) in ethanol (5 mL), 11d was isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 1:1) as a yellow solid (0.120 g, 85%), mp=62.6 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 2.28 - 2.36$ (m, 2H, CH₂), 3.02 - 3.12 (m, 2H, CH₂), 3.81 (dd, J=14.7, 7.2 Hz, 1H, CH₂-Cl), 4.22 (dd, J=14.7, 9.6 Hz, 1H, CH₂-Cl), 4.87-4.94 (m, 1H, OCH), 7.37-7.54 (m, 5H, 5×CH), 7.93-7.96 (m, 2H, 2×CH), 8.19-8.22 (m, 2H, 2×CH), 8.58–8.62 (m, 2H, 2×CH). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =33.7, 34.0 (CH₂), 60.0 (CH₂-Cl), 79.2 (OCH₂), 113.5 (CH=C-N), 127.1 (2C), 128.1, 128.2 (2C), 128.3, 128.4 (2C), 128.8 (2C, CH of Ph), 137.1, 138.0 (C of Ph), 163.9 (C-Ph), 164.2 (N=C-N), 169.9 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3064 (w), 2970 (w), 2931 (w), 2865 (w), 1648 (m), 1575 (s), 1534 (s), 1495 (w), 1448 (w), 1374 (s), 1260 (w), 1174 (w), 1116 (m), 1072 (m), 1028 (w), 778 (m), 750 (m), 695 (s). UV-vis (CH₃CN, nm): λ_{max} (log ε)=256 (4.44). MS (EI, 70 eV): m/z (%)=302 ([M-Cl]⁺, 15), 261 (30), 257 (14), 233 (4), 215 (100), 195 (5), 169 (3), 159 (24), 141 (4), 128 (13), 119 (3), 117 (21), 91 (22), 86 (20), 84 (37), 79 (4), 77 (16). Anal. Calcd for C₂₀H₁₉ClN₂O (338.837): C 70.90, H 5.65, N 8.27. Found: C 71.17, H 6.11, N 8.25.

3.1.4.11. 1-Bromo-4-(2,6-diphenylpyrimidin-4-yl)butan-2-ol (11e). Starting with **8d** (0.100 g, 0.36 mmol), benzamidine hydrochloride monohydrate (**3a**) (0.629 g, 3.6 mmol) and NEt₃ (0.49 mL, 3.6 mmol in ethanol (5 mL), **11e** was isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 1:1) as a yellow solid (0.109 g, 79%), mp=111.3 °C. ¹H NMR (CDCl₃, 300 MHz): δ =2.27–2.35 (m, 2H, CH₂), 3.01–3.14 (m, 2H, CH₂), 3.80 (dd, *J*=14.7, 7.2 Hz, 1H, CH₂–Br), 4.21 (dd, *J*=14.7, 9.6 Hz, 1H, CH₂–Br), 4.84–4.91 (m, 1H, OCH), 7.36–7.54 (m, 5H, 5×CH), 7.92–7.95 (m, 2H, 2×CH), 8.19–8.22 (m, 2H, 2×CH), 8.58–8.62 (m, 2H, 2×CH). ¹³C NMR (CDCl₃, 75 MHz): δ _C=33.7, 33.9 (CH₂), 60.0 (CH₂–Br), 79.2 (OCH), 113.5 (CH=C–N), 127.1 (2C), 128.0 (2C), 128.2 (2C), 128.27, 128.34, 128.7 (2C, CH of Ph), 137.1, 137.9 (C of Ph), 163.8 (C–Ph), 164.2 (N=C–N), 169.9 (N–C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3063 (w), 2944 (w), 1647 (s), 1572 (s), 1533 (s), 1495 (w), 1447 (m), 1424 (w), 1373 (s), 1327 (m), 1285 (w), 1258 (m), 1176 (w), 1082 (m), 1066 (m), 1027 (m), 991 (w), 920 (w), 909 (w), 868 (w), 779 (w), 748 (m), 694 (s). UV–vis (CH₃CN, nm): λ_{max} (log ε)=255 (4.54). MS (EI, 70 eV): *m/z* (%)=302 ([M–Br]⁺, 3), 300 (11), 285 (18), 284 (68), 283 (27), 271 (21), 259 (30), 246 (100), 234 (2), 232 (1), 142 (7), 128 (4), 117 (15), 104 (30), 77 (30).

3-(2,6-Diphenylpyrimidin-4-yl)-2-methyl-3.1.4.12. propan-1-ol (11f). Starting with 9a (0.500 g, 2.5 mmol), benzamidine hydrochloride monohydrate (3a) (4.370 g, 25 mmol) and NEt₃ (3.4 mL, 25 mmol) in ethanol (25 mL), **11f** was isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 1:1) as a yellow oil (0.381 g, 50%). ¹H NMR (CDCl₃, 300 MHz): δ =1.03 (d, J=6.9 Hz, 3H, CH₃), 2.28–2.37 (m, 1H, CH₂), 2.82–2.89 (m, 1H, CH₂), 2.93–2.99 (m, 1H, CH₂), 3.48 (dd, J=11.1, 6.9 Hz, 1H, OCH₂), 3.63 (dd, J=11.1, 5.1 Hz, 1H, OCH₂), 7.35-7.53 (m, 7H, CH=C, 6×CH of Ph), 8.15-8.22 (m, 2H, 2×CH of Ph), 8.52–8.60 (m, 2H, 2×CH of Ph). ¹³C NMR $(CDCl_3, 75 \text{ MHz}): \delta_C = 17.9 (CH_3), 35.4 (CH), 41.8 (CH_2),$ 66.9 (OCH₂), 114.4 (CH=C-N), 127.2 (2C), 128.2 (2C), 128.5 (2C), 128.8 (2C), 130.6, 130.8 (CH of Ph), 137.0, 137.7 (C of Ph), 163.7 (C-Ph), 164.0 (N=C-N), 169.6 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3338 (br), 3064 (w), 2966 (m), 2926 (m), 2872 (w), 1632 (w), 1574 (s), 1533 (s), 1498 (w), 1451 (m), 1374 (s), 1278 (w), 1176 (w), 1111 (m), 1075 (m), 1035 (m), 751 (m), 695 (s), 636 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=256 (4.47). MS (EI, 70 eV): m/z (%)=303 (M⁺, 1), 289 (1), 287 (4), 273 (3), 259 (12), 246 (100), 143 (7), 128 (4), 114 (5), 104 (23). Anal. Calcd for C₂₀H₂₀N₂O (304.391): C 78.92, H 6.62, N 9.20. Found: C 78.73, H 6.59, N 9.15.

3.1.4.13. 2-Methyl-3-(2-methyl-6-phenylpyrimidin-4vl)propan-1-ol (11g). Starting with 9a (0.708 g. 3.5 mmol), acetamidine hydrochloride (3b) (3.483 g, 35 mmol) and NEt₃ (4.9 mL, 35 mmol) in ethanol (35 mL), 11g was isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow EtOAc), as a pale yellow oil (0.395 g, 47%). ¹H NMR (CDCl₃, 300 MHz): δ =1.01 (d, J=6.6 Hz, 3H, CH₃), 2.01–2.14 (m, 1H, CH), 2.46 (dd, J=12.9, 5.7 Hz, 1H, CH₂), 2.76 (s, 3H, CH₃), 2.85 (dd, J=18.3, 5.7 Hz, 1H, CH₂), 3.48 (dd, J=10.5, 6.6 Hz, 1H, OCH₂), 3.61 (dd, J=10.8, 4.5 Hz, 1H, OCH₂), 7.38-7.44 (m, 4H, CH=C, 3×CH of Ph), 7.85-7.88 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =16.4, 25.8 (CH₃), 35.2 (CH), 40.3 (CH₂), 66.2 (OCH₂), 113.8 (CH=C-N), 126.8 (2C), 127.0, 128.0 (2C, CH of Ph), 136.6 (C of Ph), 164.1 (C-Ph), 167.3 (N=C-N), 169.3 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3346 (br), 3065 (w), 2963 (m), 2927 (m), 2874 (w), 1604 (s), 1529 (s), 1450 (m), 1419 (m), 1375 (m), 1325 (s), 1286 (s), 1182 (w), 1123 (w), 1074 (m), 1040 (m), 743 (s), 696 (m), 648 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=244 (3.99), 277 (3.89), 325 (4.03). MS (EI, 70 eV): m/z (%)=242 (M⁺, 100), 197 (5), 184 (93), 173 (20), 148 (5), 105 (14), 77 (19), 57 (22). HRMS (ESI): calcd for C₁₅H₁₈N₂O [M⁺]: 241.1335; found: 241.1332.

5433

3.1.4.14. 2-(2,6-Diphenylpyrimidin-4-ylmethyl)butan-1-ol (11h). Starting with 9b (0.200 g, 0.92 mmol), benzamidine hydrochloride monohydrate (3a) (1.616 g, 9.2 mmol) and NEt₃ (1.3 mL, 9.2 mmol) in ethanol (10 mL), 11h was isolated after chromatography (silica gel, n-hexane/ EtOAc=100:1 \rightarrow 1:1) as a yellow oil (0.166 g, 75%). ¹H NMR (CDCl₃, 300 MHz): δ =1.01 (t, J=7.2 Hz, 3H, CH₃), 1.37-1.48 (m, 2H, CH₂), 1.51-1.61 (m, 1H, CH), 2.93-3.08 (m, 2H, CH₂), 3.55 (dd, J=11.4, 6.6 Hz, 1H, OCH₂), 3.71 (dd, J=11.4, 4.5 Hz, 1H, OCH₂), 7.44–7.56 (m, 7H, CH=C. 6×CH of Ph). 8.20–8.24 (m. 2H. 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =11.5 (CH₃), 24.0, 39.6 (CH₂), 42.0 (CH), 64.4 (OCH₂), 114.3 (CH=C-N), 127.1 (2C), 128.1 (2C), 128.4 (2C), 128.7 (2C), 130.5, 130.7 (CH of Ph), 136.8, 137.6 (C of Ph), 163.8 (C-Ph), 163.9 (N=C-N), 169.7 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3398 (br), 3064 (w), 2966 (m), 2928 (m), 2870 (m), 1627 (w), 1574 (s), 1534 (s), 1495 (w), 1452 (m), 1374 (s), 1175 (w), 1114 (m), 1072 (m), 1035 (w), 927 (w), 751 (m), 695 (s), 636 (w). UV–vis (CH₃CN, nm): λ_{max} (log ε)=204 (4.53), 256 (4.52). MS (EI, 70 eV): m/z (%)=317 (M⁺, 1), 301 (3), 300 (3), 289 (3), 287 (2), 285 (2), 273 (3), 272 (3), 271 (12), 259 (7), 246 (100), 167 (2), 143 (3), 128 (3), 114 (3), 104 (15), 77 (7). Anal. Calcd for $C_{21}H_{22}N_2O$ (318.418): C 79.21, H 6.96, N 8.80. Found: C 79.19, H 6.82. N 8.68.

3.1.4.15. 2-(2-Methyl-6-phenylpyrimidin-4-ylmethyl)butan-1-ol (11i). Starting with 9b (0.075 g, 0.347 mmol), acetamidine hydrochloride (3b) (0.328 g, 3.47 mmol) and NEt₃ (0.48 mL, 3.47 mmol) in ethanol (7 mL), **11i** was isolated after chromatography (silica gel. *n*-hexane/EtOAc= $50:1 \rightarrow 1:1$) as a pale yellow oil (0.037 g, 42%). ¹H NMR (CDCl₃, 300 MHz): δ=0.98 (t, J=7.5 Hz, 3H, CH₃), 1.33-1.45 (m, 2H, CH₂), 1.92-2.01 (m, 1H, CH), 2.76 (s, 3H, CH₃), 2.91 (dd, J=8.4, 8.4 Hz, 2H, CH₂), 3.50 (dd, J=11.1, 6.3 Hz, 1H, OCH₂), 3.66 (dd, J=11.1, 4.2 Hz, 1H, OCH₂), 7.39 (s, 1H, CH), 7.47-7.51 (m, 3H, 3×CH of Ph), 8.05-8.08 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =11.8 (CH₃), 24.4 (CH₂), 26.1 (CH₃), 40.1 (CH₂), 42.1 (CH), 64.8 (OCH₂), 113.9 (CH=C-N), 127.3 (2C), 128.9 (2C), 130.8 (CH of Ph), 137.0 (C of Ph), 164.6 (C-Ph), 167.6 (N=C-N), 169.4 (N-C=CH). IR (neat, cm⁻¹): $\tilde{\nu}$ =3376 (w), 2963 (m), 2928 (m), 2873 (m), 1654 (w), 1583 (s), 1540 (s), 1492 (w), 1449 (m), 1391 (m), 1382 (m), 1311 (w), 1250 (w), 1170 (m), 1116 (w), 1047 (m), 1000 (w), 974 (w), 789 (w), 756 (w), 696 (m). UVvis (CH₃CN, nm): λ_{max} (log ε)=249 (3.94), 255 (3.93), 276 (4.07). MS (EI, 70 eV): m/z (%)=256 (M⁺, 1), 241 (1), 239 (3), 225 (4), 211 (4), 197 (9), 184 (100). HRMS (ESI): calcd for C₁₆H₂₀N₂O ([M-H]⁺): 255.14879; found: 255.14974.

3.1.4.16. 1-Bromo-4-(6-methyl-2-phenylpyrimidin-4-yl)butan-2-ol (11j). Starting with **8e** (0.100 g, 0.46 mmol), benzamidine hydrochloride monohydrate (**3a**) (0.735 g, 4.6 mmol) and NEt₃ (0.64 mL, 4.6 mmol) in ethanol (5 mL), **11j** was isolated after chromatography (silica gel, *n*-hexane/EtOAc=100:1 \rightarrow 3:1) as a light brown oil (0.135 g, 91%). ¹H NMR (CDCl₃, 300 MHz): δ =2.17–2.31 (m, 2H, CH₂), 2.53 (s, 3H, CH₃), 2.87–3.03 (m, 2H, CH₂), 3.77 (dd, *J*=14.7, 7.5 Hz, 1H, CH₂–Br), 4.19 (dd, *J*=14.7, 9.6 Hz, 1H, CH₂–Br), 4.80–4.88 (m, 1H, OCH),

6.94 (s, 1H, CH=C), 7.37-7.49 (m, 3H, 3×CH of Ph), 8.42-8.47 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): δ_{C} =24.1 (CH₃), 33.2, 33.8 (CH₂), 59.7 (CH₂-Br), 79.2 (OCH), 117.4 (CH=C-N), 128.1 (2C), 128.3 (2C), 130.3 (CH of Ph), 137.9 (C of Ph), 164.0 (N=C-N), 167.0 (C-CH₃), 168.8 (N-C=CH). IR (neat, cm^{-1}): $\tilde{\nu}$ =3066 (br, w), 2935 (m), 2868 (w), 1646 (s), 1584 (s), 1543 (m), 1445 (m), 1371 (s), 1316 (w), 1260 (m), 1073 (m), 1030 (w), 696 (s). UV-vis (CH₃CN, nm): λ_{max} $(\log \varepsilon) = 254$ (4.17). MS (EI, 70 eV): m/z (%)=322 (M⁺ $[^{81}Br], 11), 320 (M^+ [^{79}Br], 11), 304 (3), 289 (3), 242$ (35), 228 (41), 198 (19), 184 (100). HRMS (ESI): calcd for $C_{15}H_{17}BrN_2O$ [M⁺]: 322.0504 (⁸¹Br), 320.0524 (⁷⁹Br); found: 322.0509 (81Br), 320.0529 (79Br). Anal. Calcd for C₁₅H₁₇BrN₂O (321.212): C 56.09, H 5.33, N 8.72. Found: C 55.95, H 5.62, N 8.68.

3.1.4.17. 4-(6-Methyl-2-phenylpyrimidin-4-yl)butane-1,2-diol (11k). Starting with 10 (0.100 g, 0.64 mmol), benzamidine hydrochloride monohydrate (3a) (1.023 g, 6.4 mmol) and NEt₃ (0.89 mL, 6.4 mmol) in ethanol (5 mL), 11k was isolated after chromatography (silica gel, *n*-hexane/EtOAc= $50:1 \rightarrow$ EtOAc) as a light brown oil (0.145 g, 88%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.87 -$ 1.98 (m, 2H, CH₂), 2.55 (s, 3H, CH₃), 2.94–2.98 (m, 2H, CH₂), 3.52 (dd, J=11.1, 6.6 Hz, 1H, CH₂-OH), 3.66 (dd, J=11.1, 3.3 Hz, 1H, CH₂-OH), 3.76-3.84 (m, 1H, OCH), 6.95 (s, 1H, CH=C), 7.43-7.49 (m, 3H, 3×CH of Ph), 8.35-8.39 (m, 2H, 2×CH of Ph). ¹³C NMR (CDCl₃, 75 MHz): $\delta_{\rm C}$ =24.1 (CH₃), 31.2, 33.6 (CH₂), 66.5 (CH₂-OH), 71.5 (OCH), 117.7 (CH=C-N), 128.1 (2C), 128.5 (2C), 130.4 (CH of Ph), 137.6 (C of Ph), 163.9 (N=C-N), 167.4 (C-CH₃), 169.5 (N-C=CH). IR (neat, cm^{-1}): $\tilde{\nu}$ =3375 (br, s), 2929 (m), 2867 (w), 1663 (m), 1586 (s), 1539 (s), 1442 (m), 1376 (s), 1099 (m), 1043 (w), 698 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=256 (4.12). MS (EI, 70 eV): m/z (%)=258 (M⁺, 12), 241 (3), 224 (5), 210 (37), 197 (39), 183 (45), 169 (100). HRMS (ESI): calcd for C₁₅H₁₈N₂O₂ [M⁺]: 258.13683; found: 258.13678. Anal. Calcd for C15H18N2O2 (258.316): C 69.74, H 7.02, N 10.84. Found: C 69.91, H 6.83, N 10.68.

Acknowledgements

Financial support from the DAAD (scholarship for E.B.), from BASF AG, from the state of Mecklenburg-Vorpommern (Landesforschungsschwerpunkt 'Neue Wirkstoffe und Screeningverfahren') and from the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References and notes

 Hassan, N. A. *Molecules* 2000, *5*, 827; references cited therein: (a) Pemmsin, M.; Lnu-Due, C.; Hoguet, F.; Gaultier, C.; Narcisse, J. *Eur. J. Chem.* 1988, *23*, 543; (b) Cannito, A.; Pemmsin, M.; Lnu-Due, C.; Hoguet, F.; Gaultier, C.; Narcisse, J. *Eur. J. Chem.* 1990, *25*, 635; (c) Smith, P. A. S.; Kan, R. O. *J. Org. Chem.* 1964, *29*, 2261; (d) Nega, S.; Aionso, J.; Diazj, A.; Junquere, F. J. *Heterocycl. Chem.* 1990, *27*, 269; (e) Tetsuo, S.; Mikio, T.; Hidetoshi, H.; Daijiro, H.; Akira, I. Jpn. Kokai *Tokyo Koho JP* 62,132,884, 1987; *Chem. Abstr.* **1987**, *107*, 198350h; (f) Chakaravorty, P. K.; Grelnlee, W. J.; Dooseap, K.; Mantlo, N. B.; Patchett, A. A. A.P.C.T. Int. Appl. WO 92.20.687.156, 1992; *Chem. Abstr.* **1993**, *118*, 213104d; (g) Shishoo, C. J.; Jain, K. S. J. Heterocycl. Chem. **1992**, *29*, 883.

- Adlington, R. M.; Baldwin, J. A.; Catterick, D.; Pritchard, G. J. J. Chem. Soc., Perkin Trans. 1 1999, 855; references cited therein: (a) Rosenthal, G. A. Plant Nonprotein Amino and Imino Acids Biological, Biochemical and Toxicological Properties; Academic: New York, NY, 1982; p 117; (b) Bell, E. A. Biochim. Biophys. Acta 1961, 47, 602.
- (a) Katritzky, A. R.; Soloducho, J.; Belyakov, S. ARKIVOC 2000, 1, 37; (b) Spivey, A. C.; Srikaran, R.; Diaper, C. M.; Turner, D. J. Org. Biomol. Chem. 2003, 1, 1638; (c) Bratušek, U.; Meden, A.; Svete, J.; Stanovnik, B. ARKIVOC 2003, V, 77; (d) Shutalev, A. D.; Kishko, E. A.; Sivova, N. V.; Kuznetsov, A. Y. Molecules 1998, 3, 100; (e) Bowman, M. D.; Jeske, R. C.; Blackwell, H. E. Org. Lett. 2004, 6, 2019 and references cited therein.
- For cycloadditions, see: (a) Weichert, A.; Hoffmann, H. M. R. J. Org. Chem. 1991, 56, 4098; (b) Tchelitcheff, P. Bull. Soc. Chim. Fr. 1954, 672; (c) Ireland, R. E.; Haebich, D. Chem. Ber. 1981, 114, 1418; (d) Audrain, H.; Thorhauge, J.; Hazell, R. G.; Joergensen, K. A. J. Org. Chem. 2000, 65, 4487; for reactions with amines, see: (e) Detty, M. R. J. Org. Chem. 1979, 44, 2073; (f) Batra, S.; Srivastava, S.; Singh, K.; Chander, R.; Khanna, A. K.; Bhaduri, A. P. Bioorg. Med. Chem. 2000, 8, 2195; for cyclopropanations: (g) Kirmse, W.; Rode, K. Chem. Ber. 1987, 120, 847; for hydrogenations: (h) Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.; Takaya, H. J. Org. Chem. 1995, 60, 357; see also Ref. 2.
- Reviews: (a) Oivin, T. L. B. *Tetrahedron* **1987**, *43*, 3309; (b) Barrett, A. G. M.; Sheth, H. G. J. Org. Chem. **1983**, *48*, 5017; (c) Rao, Y. S. Chem. Rev. **1976**, *76*, 625; (d) Pattenden, G. Prog. Chem. Nat. Prod. **1978**, *35*, 133; (e) Knight, D. W. Contemp. Org. Synth. **1994**, *1*, 287; (f) Gerlach, H.; Wetter, H.

Helv. Chim. Acta **1974**, *57*, 2306; (g) Schmidt, U.; Gombos, J.; Haslinger, E.; Zak, H. *Chem. Ber.* **1976**, *109*, 2628; (h) Bartlett, P. A.; Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. **1984**, *106*, 5304; (i) Lygo, B. *Tetrahedron* **1988**, *44*, 6889.

- (a) Ley, S. V.; Lygo, B.; Organ, H. M.; Wonnacott, A. *Tetrahedron* **1985**, *41*, 3825; (b) Booth, P. M.; Fox, C. M. J.; Ley, S. V. *J. Chem. Soc., Perkin Trans. 1* **1987**, 121; (c) Mori, K.; Sasaki, M.; Tamada, S.; Suguro, T.; Masuda, S. *Tetrahedron* **1979**, *35*, 1601.
- For reviews of cyclization reactions of free and masked dianions, see: (a) Langer, P. *Chem.—Eur. J.* 2001, *7*, 3858; (b) Langer, P. *Synthesis* 2002, 441; (c) Langer, P.; Freiberg, W. *Chem. Rev.* 2004, *104*, 4125.
- (a) Langer, P.; Bellur, E. J. Org. Chem. 2003, 68, 9742; see also:
 (b) Edwards, G. L.; Sinclair, D. J. Tetrahedron Lett. 1999, 40, 3933;
 (c) Krueger, S. A.; Bryson, T. A. J. Org. Chem. 1974, 39, 3167;
 (d) Gabriele, B.; Salerno, G.; De Pascali, F.; Costa, M.; Chiusoli, G. P. J. Organomet. Chem. 2000, 593–594, 409;
 (e) Pflieger, D.; Muckensturn, B. Tetrahedron 1989, 45, 2031.
- (a) Bellur, E.; Langer, P. Synlett 2004, 2169; (b) Bellur, E.; Langer, P. Eur. J. Org. Chem. 2005, 4815; (c) Bellur, E.; Langer, P. Synthesis 2006, 3, 480.
- (a) Bellur, E.; Langer, P. Synlett 2004, 2172; (b) Bellur, E.; Langer, P. J. Org. Chem. 2005, 70, 3819; (c) Bellur, E.; Langer, P. J. Org. Chem. 2005, 70, 7686.
- 11. Bellur, E.; Görls, H.; Langer, P. Eur. J. Org. Chem. 2005, 2074.
- (a) Bellur, E.; Freifeld, I.; Langer, P. *Tetrahedron Lett.* 2005, 46, 2185; (b) Bellur, E.; Langer, P. J. Org. Chem. 2005, 70, 10013.
- 13. Detty, M. R. J. Org. Chem. 1979, 44, 2073.
- Langer, P.; Holtz, E.; Karimé, I.; Saleh, N. N. R. J. Org. Chem. 2001, 66, 6057.
- Langer, P.; Armburst, H.; Eckardt, T.; Magull, J. Chem.— Eur. J. 2002, 8, 1443.
- 16. Langer, P.; Freifeld, I. Chem.-Eur. J. 2001, 7, 565.